Genetics of susceptibility to human helminthiasis

Reviews

DOI: 10.12737/21667
Received: 15.10.2015
Accepted: 10.07.2016
Link to full russian text
Download PDF format

For citation:
Nacheva L.V., Kutikhin A.G. Genetics of susceptibility to human helminthiasis. Russian Journal of Parasitology, 2016, V. 37, Iss. 3, pp. 296–303


GENETICS OF SUSCEPTIBILITY TO HUMAN HELMINTHIASIS

Nacheva L.V., Kutikhin A.G.
Kemerovo State Medical Academy, 650029, Kemerovo, 22а Voroshilov St., e-mail: kemsma@ kemsma.ru

Abstract

Objective of research: to provide the analysis of literature sources describing the in uence of host genes on genetic susceptibility to helminthiasis and the features of its pathogenesis.

Results and discussion: all recent scienti c works dedicated to the in uence of host genes on genetic susceptibility to helminthiasis and the features of its pathogenesis were considered. The most important determinants of impact of host genes on genetic susceptibility to helminthiasis are gene polymorphisms TAP for echinococcosis, variants of genetic loci SM1 and SM2 for bilharziasis (schistosomiasis), and gene polymorphisms HLA for all three parasitic diseases described in this article.

Keywords: genetics, susceptibility, helminthiasis, schistosomiasis, echinococcosis, anisakiasis, polymorphism, immune response.

References

1. Prokhorov B.B. Sostoyanie zdorov’ya naseleniya Rossii. Rossiya v okruzhayushhem mire: analiticheskiy ezhegodnik. [The health status of the population of the Russian Federation. Russia in the outside world: analytical yearbook]. M., 1998, pp. 82–100.
2. Global Estimates for Health Situation Assessment and Projections. Geneva, WHO, 1990.
3. Quinnell R.J. Genetics of susceptibility to human helminth infection. Int. J. Parasitol., 2003, vol. 33, pp. 1219–1231.
4. Abel L., Marquet S., Chevillard C. et al. Genetic predisposition to bilharziasis in humans: research methods and application to the study of Schistosoma mansoni infection. J. Soc. Biol., 2000, vol. 194, pp. 15–18.
5. Rodrigues V. Jr., Piper K., Couissinier–Paris P. et al. Genetic control of schistosome infections by the SM1 locus of the 5q31-q33 region is linked to differentiation of type 2 helper T lymphocytes. Infect. Immunol., 1999, vol. 67, pp. 4689–4692.
6. Dessein A.J., Hillaire D., Elwali N. E. et al. Severe hepatic brosis in Schistosoma mansoni infection is controlled by a major locus that is closely linked to the interferon-gamma receptor gene. Am. J. Hum. Genet., 1999, vol. 65, pp. 709–721.
7. McManus D.P., Ross A. G., Williams G. M. et al. HLA class II antigens positively and negatively
© Самойловская Н.А. © Муравьева Л.А. © Samoylovskaya N. © Muraveva L.
All-Russian Scienti c Research Institute of Fundamental and Applied Parasitology of Animals and Plants named after K.I. Skryabin 117218, Russia, Moscow, Bolshaya Cheremushkinskaya str., 28 © Russian Journal of Parasitology 301, Том 37 Выпуск 3/2016 associated with hepatosplenic schistosomiasis in a Chinese population. Int. J. Parasitol., 2001, vol. 31, pp. 674–680.
8. Kariuki H.C., Mbugua G., Magak P. et al. Prevalence and familial aggregation of schistosomal liver morbidity in Kenya: evaluation by new ultrasound criteria. J. Infect. Dis., 2001, vol. 183, pp. 960–966.
9. Zinn–Justin A., Marquet S., Hillaire D. et al. Genome search for additional human loci controlling infection levels by Schistosoma mansoni. Am. J. Trop. Med. Hyg., 2001, vol. 65, pp. 754–758.
10. Chevillard C., Moukoko C.E., Elwali N.E. et al. IFN-gamma polymorphisms (IFN-gamma +2109 and IFN-gamma +3810) are associated with severe hepatic brosis in human hepatic schistosomiasis (Schistosoma mansoni). J. Immunol., 2003, vol. 171, pp. 5596–5601.
11. King C.H., Blanton R.E., Muchiri E.M. et al. Low heritable component of risk for infection intensity and infection-associated disease in urinary schistosomiasis among Wadigo village populations in Coast Province, Kenya. Am. J. Trop. Med. Hyg., 2004, vol. 70, pp. 57–62.
12. Hirayama K., Chen H., Kikuchi M. et al. HLA-DR-DQ alleles and HLA-DP alleles are independently associated with susceptibility to different stages of post-schistosomal hepatic brosis in the Chinese population. Tissue Antigens, 1999, vol. 53, pp. 269–274.
13. Hirayama K. Immunogenetic analysis of post-schistosomal liver brosis. Parasitol. Int., 2004, vol. 53, pp. 193–196.
14. Dessein A., Kouriba B., Eboumbou C. et al. Interleukin-13 in the skin and interferon-gamma in the liver are key players in immune protection in human schistosomiasis. Immunol. Rev., 2004, vol. 201, pp. 180–190. 15. Blanton R.E., Salam E.A., Ehsan A. et al. Schistosomal hepatic brosis and the interferon gamma receptor: a linkage analysis using single-nucleotide polymorphic markers. Eur. J. Hum. Genet., 2005, vol. 13,
pp. 660–668.
16. Hopkin J. Immune and genetic aspects of asthma, allergy and parasitic worm infections: evolutionary links. Parasite Immunol., 2009, vol. 31, pp. 267–273.
17. He H., Isnard A., Kouriba B. et al. A STAT6 gene polymorphism is associated with high infection levels in urinary schistosomiasis. Genes Immun., 2008, vol. 9, pp. 195–206.
18. Ellis M.K., Zhao Z.Z., Chen H.G. et al. Analysis of the 5q31 33 locus shows an association between single nucleotide polymorphism variants in the IL-5 gene and symptomatic infection with the human blood uke, Schistosoma japonicum. J. Immunol., 2007, vol. 179, pp. 8366–8371.
19. Ellis M.K., Raso G., Li Y.S. et al. Familial aggregation of human susceptibility to co- and multiple helminth infections in a population from the Poyang Lake region, China. Int. J. Parasitol., 2007, vol. 37, pp. 1153–1161.
20. Dessein A., Chevillard C., Arnaud V. et al. Variants of CTGF are associated with hepatic brosis in Chinese, Sudanese, and Brazilians infected with schistosomes. J. Exp. Med., 2009, vol. 26, pp. 2321–2328. 21. Kouriba B., Chevillard C., Bream J. H. et al. Analysis of the 5q31-q33 locus shows an association
between IL13-1055C/T IL-13-591A/G polymorphisms and Schistosoma haematobium infections. J. Immunol., 2005, vol. 174, pp. 6274–6281.
22. Abbas O.M., Abdel–Rahman M. H., Omar N. A. et al. Interleukin-10 promoter polymorphisms in hepatitis C patients with and without Schistosoma mansoni co-infection. Liver Int., 2009, vol. 29, pp. 1422– 1430.
23. Vuitton D.A., Zhang S.L., Yang Y. et al. Survival strategy of Echinococcus multilocularis in the human host. Parasitol. Int., 2006, vol. 55, pp. 51–55.
24. Li F., Shi Y., Shi D. Association of HLA-DRB1 allele and the susceptibility to alveolar echinococcosis in the west of China. Zhonghua Yi Xue Za Zhi, 2000, vol. 80, pp. 414–416.
25. Godot V., Harraga S., Beurton I. et al. Resistance/susceptibility to Echinococcus multilocularis infection and cytokine pro le in humans. II. In uence of the HLA B8, DR3, DQ2 haplotype. Clin. Exp. Immunol., 2000, vol. 121, pp. 491–498.
26. Eiermann T. H., Bettens F., Tiberghien P. et al. HLA and alveolar echinococcosis. Tissue Antigens, 1998, vol. 52, pp. 124–129.
27. Vuitton D.A., Mantion G., Bartholomot B. et al. Parasite-host relationships and treatment. Bull. Acad. Natl. Med., 2008, vol. 192, pp. 1103–1116.
28. Sánchez–Velasco P., Mendizábal L., Antón E. M. et al. Association of hypersensitivity to the nematode Anisakis simplex with HLA class II DRB1*1502-DQB1*0601 haplotype. Hum. Immunol., 2000, vol. 61, pp. 314–319.
29. Zhang S., Penfornis A., Harraga S. et al. Polymorphisms of the TAP1 and TAP2 genes in human alveolar echinococcosis. Eur. J. Immunogenet., 2003, vol. 30, pp. 133–139.
30. Lukmanova G.I., Gumerov A.A., Balalov F.S. et al. Associations of the genotypes of the CYP1A1 gene with predisposition to hydatid disease caused by Echinococcus granulosus strain G1. Med. Parazitol., 2008, vol. 3, pp. 17–19.
31. Yalcin E., Kiper N., Tan C. et al. The role of human leucocyte antigens in children with hydatid disease: their association with clinical condition and prognosis. Parasitol. Res., 2010, vol. 106, pp. 795–800.
32. Kiper N., Gerçeker F., Utine E. et al. TAP1 and TAP2 gene polymorphisms in childhood cystic echinococcosis. Parasitol. Int., 2010, vol. 59, pp. 283–285.


© 2016 The Author(s). Published by All-Russian Scienti c Research Institute of Fundamental and Applied Parasitology of Animals and Plants named after K.I. Skryabin. This is an open access article under the Agreement of 02.07.2014 (Russian Science Citation Index (RSCI)http://elibrary.ru/projects/citation/cit_index. asp) and the Agreement of 12.06.2014 (CA-BI.org/Human Sciences section: http://www.cabi.org/Uploads/ CABI/publishing/fulltext-products/cabi-fulltext-material-from-journals-by-subject-area.pdf)